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Abstract 

Background:  Mitochondrial (mt) nucleotide sequence data has been by far the most common tool employed to 
investigate evolutionary relationships. While often considered to be more useful for shallow evolutionary scales, mt 
genomes have been increasingly shown also to contain valuable phylogenetic information about deep relationships. 
Further, mt genome organization provides another important source of phylogenetic information and gene reor‑
ganizations which are known to be relatively frequent within the insect order Hymenoptera. Here we used a dense 
taxon sampling comprising 148 mt genomes (132 newly generated) collectively representing members of most of 
the currently recognised subfamilies of the parasitoid wasp family Braconidae, which is one of the largest radiations of 
hymenopterans. We employed this data to investigate the evolutionary relationships within the family and to assess 
the phylogenetic informativeness of previously known and newly discovered mt gene rearrangements.

Results:  Most subfamilial relationships and their composition obtained were similar to those recovered in a previous 
phylogenomic study, such as the restoration of Trachypetinae and the recognition of Apozyginae and Proteropinae as 
valid braconid subfamilies. We confirmed and detected phylogenetic signal in previously known as well as novel mt 
gene rearrangements, including mt rearrangements within the cyclostome subfamilies Doryctinae and Rogadinae.

Conclusions:  Our results showed that both the mt genome DNA sequence data and gene organization contain 
valuable phylogenetic signal to elucidate the evolution within Braconidae at different taxonomic levels. This study 
serves as a basis for further investigation of mt gene rearrangements at different taxonomic scales within the family.
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Background
Mitochondria play a central role in cellular metabolism, 
providing energy to nearly all living eukaryotic organ-
isms [1, 2]. Study of mitochondrial (mt) DNA therefore 

is fundamental in a number of areas of research, includ-
ing physiology, molecular biology and evolution [2, 3]. 
The metazoan mt genome typically consists of 15–18 
kilobases, comprising 13 protein-coding genes, 22 trans-
fer RNAs (tRNAs) and two ribosomal RNAs (rRNAs) [4], 
and this composition is generally conserved across bilate-
rian metazoans [5, 6].

The analysis of mt nucleotide sequence data is one of 
the most common approaches to investigate evolutionary 
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relationships. While often considered more useful for 
shallow evolutionary scales [7], it has been increasingly 
shown that mtDNA can also be informative to investigate 
deeper relationships [8, 9]. Another important source 
of phylogenetic information can be obtained from the 
mt genome organization, which is generally conserved 
in many groups of Metazoans but has been shown to be 
relatively plastic in some insect orders, including Hyme-
noptera [5, 10, 11].

With more than 21,000 described species [12] distrib-
uted in 41 subfamilies [13], Braconidae (Hymenoptera: 
Ichneumonoidea) represents one of the largest radiations 
in Hymenoptera [14]. The vast majority of braconid spe-
cies are either ecto- or endoparasitoids of juvenile stages 
of other holometabolous insects [14, 15]. Members of this 
family are divided into two main groups, the cyclostomes 
sensu lato, which are characterized by having the lower 
part of the clypeus sharply recessed exposing a concave, 
smooth glabrous labrum [16], and the non-cyclostomes, 
which do not have the clypeus sharply recessed and 
with the labrum flat and setiferous [16]. Cyclostomes s.l. 
include the aphidioid subfamilies and other groups that 
have secondarily lost the cyclostome condition such as 
Alysiinae, Opiinae, some Betylobraconini within the sub-
family Rogadinae and some Gnamptodontini within Tel-
engaiinae. Cyclostomes s.l. and non-cyclostomes together 
comprise the braconoid complex [13].

The higher-level classification of Braconidae has 
changed considerably through time, in part because of 
the challenges posed by high levels of morphological 
convergence among its members [14], limited taxonomic 
sampling and/or limited number of available molecu-
lar markers (e.g., [11, 17, 18]). For example, some taxa 
treated as subfamilies within Braconidae (i.e. Apozyginae, 
Trachypetinae, Masoninae) have been either considered 
or recovered as separate lineages outside of the family 
[19–21] but also as part Braconidae based on different 
sources of evidence [11, 13, 17, 22].

There is a general consensus for several subfamily-
level relationships both for the cyclostome and non-
cyclostome groups using different sources of data (e.g., 
[11, 23–26]). In particular, two key molecular phyloge-
netic studies [24, 26] confirmed a number of subfamilial 
relationships with strong support, as well as confidently 
placing a number of genera whose affinities had previ-
ously been rather doubtful. However, the placement and 
relationships of some other genera and subfamilies has 
remained unclear; for example, relationships of vari-
ous genera within Hormiinae and Rhysipolinae and also 
whether some groups (e.g., Doryctinae and Mesostoinae) 
are actually monophyletic.

Mt gene rearrangements have been used for infer-
ring evolutionary relationships among the braconid 

subfamilies since the pioneering study of [27], which 
found a clear pattern of gene rearrangement between the 
cyclostome and non-cyclostome groups. For the non-
cyclostomes, the block of tRNAs located between the 
protein-coding genes COX2 and ATP8 was recovered 
with a trnK-trnD pattern [27]. On the other hand, for the 
cyclostomes this tRNAs block was recovered with three 
different arrangements: trnK-trnD, trnD-trnK and trnD-
trnH-trnK [27]. Subsequent studies have confirmed the 
above tRNAs arrangements and phylogenetic relation-
ships among subfamilies that have been recovered in pre-
vious studies using protein-coding gene sequence data for 
phylogenetic reconstruction [25, 28, 29]. Although these 
studies represent an important basis for investigating the 
higher-level relationships of Braconidae, their taxonomic 
sampling was limited, with most of the subfamilies being 
represented only by one species or not represented at all.

Here, we provide the most comprehensive compara-
tive mitogenomic study of Braconidae carried out to date, 
using 148 mt genomes (132 newly generated) including 
species belonging to all cyclostome s.l. and most non-
cyclostome subfamilies, as well as a number of outgroup 
taxa. We used protein-coding and rRNA gene sequence 
data to reconstruct the phylogenetic relationships of 
Braconidae. We also characterized the organization of 
the protein-coding, tRNA and rRNA genes at subfamily 
and tribal levels. We found important variation in the mt 
gene organization within Braconidae, revealing that this 
source of data is informative to recognize groups within 
Braconidae.

Results
Mitogenome assembly and annotation
We generated and annotated a total of 132 complete and 
partial ichneumonoid mt genomes (Additional file  1: 
Table  S1). All but 21 mt genomes were recovered in a 
single contig in the de novo assembly (Additional file 1: 
Table  S1). For cyclostome s.l. braconids, we assem-
bled and annotated 29 complete and 58 partial mitog-
enomes, ranging from 2730 to 19,429  bp with a mean 
read depth from 8.8 to 870.9. For the non-cyclostome 
braconids, we generated four complete and 36 partial 
mitogenomes, ranging from 4364 to 16,033  bp with a 
mean read depth from 12.1 to 1996.0. For the ichneu-
monid taxa, we obtained one complete and three partial 
mitogenomes that ranged from 7924 to 18,583 pb, with a 
mean read depth from 44.8 to 105.8, whereas we recov-
ered a partial mt genome for Apozyx penyai (Apozyginae) 
that comprised 12,332 bp with a mean read depth = 60.2 
(Additional file 1: Table S1). We found a significant cor-
relation between the mt genome assembly size and age 
of the specimens (p = 0.0020, R2 = 0.0946) (Fig.  1A), 
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Fig. 1  A Statistical correlation between the mt genomes assembly size and the age of the examined specimens. B Number of mt genomes (y-axis) 
for which each protein-coding gene was recovered (x-axis). C Number of mt genomes (y-axis) for which each tRNA was recovered (x-axis)
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with specimens between 1–28 and ≥ 30  years having 
an average of 13,246.45 and 11,174.42  bp assemblies, 
respectively.

For 66 out of the 122 mt genomes that were assembled 
as a secondary product of UCE libraries we recovered 
the two rRNAs, for 28 we only recovered the rrnL, for 
three only the rrnS and for 25 both rRNAs were missing 
(Additional file 1: Table S1). The protein coding gene that 
was recovered for most mt genomes was COX1 (121 mt 
genomes), whereas NAD2 was missing for 37 (Fig.  1B, 
Additional file 1: Table S1). Similarly, for the tRNAs both 
trnL2 and trnA were recovered for 113 and trnQ was 
recovered for 55 mt genomes (Fig. 1C, Additional file 1: 
Table  S1). Within the tRNA blocks trnA-trnR-trnN-
trnS1-trnE-tnrF, trnI-trnM-trnQ, trnW-trnY-trnC and 
trnK-trnD-trnH, the tRNAs trnA, trnI, trnY and trnD 
were recovered in most of the assembled mt genomes, 
respectively (Fig. 1C).

Phylogenetic relationships
The phylograms derived from the two ML analyses (pre-
defining partitions and best-fit partitioning scheme) 
recovered the same topology, with few differences in 
bootstrap (BTP) values for some nodes (Fig. 2, Additional 
file 4: Fig. S1). The phylogram derived from the Bayesian 
analysis recovered almost the same topology obtained in 
the ML analyses, with most nodes having significantly 
supported posterior probability (PP) values. Few excep-
tions were in the placement of the two representatives of 
Avga, which were recovered in the Bayesian phylogram as 
sister to the clade comprising the Holartic-African-Mad-
agascan (HAM) doryctines + Pambolinae but with low 
support (PP = 0.52) (Additional file 5: Fig. S2), whereas in 
the ML topology Avga was sister to a large clade includ-
ing HAM doryctines + Pambolinae but also Rogadinae, 
Hormiinae, Rhysipolinae and the braconoid subcomplex 
(Fig. 2, Additional file 5: Fig. S2). Other exceptions were 
the tribal relationships at the interior of Rogadinae, with 
some nodes recovered with low support, and the place-
ment of Spathius elegans Matthews (Doryctinae) as sis-
ter to the braconoid subcomplex, but with low support 
(PP = 0.40).

The topologies obtained from the analyses with dis-
tinct levels of missing data were mostly congruent with 
the phylograms recovered in the ML and Bayesian analy-
ses using the complete matrix (Additional file 6: Fig. S3). 
Examples of the same recovered relationships are the 
monophyly of both cyclostomes and non-cyclostomes, 
monophyly of most subfamilies (except Doryctinae and 
Mesostoinae), monophyly of the braconoid subcom-
plex, sister relationship of the non-cyclostomes with the 
subfamilies that comprise the aphidioid complex, and 
the monophyly of the non-cyclostome complexes in the 

datasets that had taxa representing all four complexes. 
Finally, in the cases where the only member of Apozygi-
nae was included, it was always recovered as sister to the 
remaining braconid subfamilies.

Hereafter we refer to the results obtained in the ML 
analysis conducted using the complete matrix with the 
best-fit partitioning scheme (Fig. 2), only mentioning the 
BTP values < 100. Braconidae was recovered as mono-
phyletic and included T. clavatus within the non-cyclos-
tome clade. Both cyclostomes and non-cyclostomes were 
recovered as reciprocally monophyletic. Apozyx penyai 
was recovered as sister to Braconidae, whereas Ichneu-
monidae was sister to Braconidae + A. penyai.

Cyclostome s.l. clade
Most cyclostome subfamilies were recovered as mono-
phyletic with strong support with the exception of 
Doryctinae and Mesostoinae (with respect to Maxfische-
ria tricolor Papp).

Rogadinae was recovered as sister to Hormiinae. 
Within Rogadinae, Rogadini was sister to Stiropiini 
and both were sister to the remaining tribes. Within 
Hormiinae, Cedriini was strongly supported as sister 
to the remaining hormiine tribes (BTP = 99). Hormiini 
and Pentatermini were sister tribes, but Lysitermini was 
non-monophyletic, with Aulosaphoides sister to Aulosa-
phobracon capitatus Belokobylskij and Long (Aulosapho-
braconini) but with low support (BTP = 65). Rhysipolinae 
appeared as sister to Rogadinae + Hormiinae (BTP = 83), 
and it was divided into two clades, one containing Pseu-
davga and Rhysipolis bicarinator Belokobylskij and the 
other Allobracon and Parachremylus litchii Belokobylskij 
and Maeto.

The Alysiinae and Opiinae were sister groups. Within 
Alysiinae, most representatives of Dacnusini were nested 
in a single clade except for Symphya, which was sister to 
Asyntactus rhogaleus Marshall (Alysiini) (BTP = 91). The 
opiines Diachasma muliebre Muesebeck (Biosterini) and 
Diachasmimorpha longicaudata Ashmead, on the other 
hand, were recovered as sister taxa, rendering the Opiini 
as non-monophyletic. Exothecinae was sister to Alysii-
nae + Opiinae; Colastes was recovered as non-monophy-
letic with Colastinus crustatus Belokobylskij as sister to 
the remaining exothecines. Braconinae was recovered 
as sister to the Alysiinae + Opiinae + Exothecinae clade 
with high support (BTP = 93). Telengaiinae was sister to 
a clade comprising Braconinae, Exothecinae, Opiinae and 
Alysiinae.

The included members of the Doryctinae were divided 
into two separate clades. One contained Eodendrus, 
Euscelinus, Rhaconotus and Spathius, together with the 
members of Pambolinae. The second doryctine clade 
mainly included Neotropical genera and was sister to all 
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Fig. 2  Maximum likelihood phylogram of Braconidae derived from the concatenated matrix with the best-fit partition model. Green = cyclostome 
s.l. subfamilies, orange = non-cyclostomes subfamilies, blue = Apozyx penyai (Apozyginae), grey = Ichneumonidae, light grey = Megaspilidae 
(outgroup). Numbers near nodes are bootstrap values
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the aforementioned cyclostome braconid subfamilies. 
The two representative species of Avga (Avgini Beloko-
bylskij) were recovered a sister to all the above sub-
families. Rhyssalinae was sister to all aforementioned 
cyclostome subfamilies, with the acrisidines Acrisis 
brevicornis Hellén and Proacrisis orientalis Tobias as 
sister taxa with strong support (BTP = 96). However, 
the placement of Rhyssalus clavator Haliday as sister to 
the remaining rhyssalines rendered the tribe Rhyssalini 
non-monophyletic.

Aphidioid subfamilies were recovered as sister to 
remaining cyclostomes s.s. For instance, Maxfischeria 
tricolor was recovered within Mesostoinae as sister to 
Andesipolis sp., Hydrangeocola llaollin Martínez and 
Austrohormius sp. The subfamily Aphidiinae was recov-
ered as sister to Mesostoinae + M. tricolor.

Non‑cyclostome clade
The non-cyclostome clade was recovered as sister to 
the cyclostome s.l. subfamilies. Within the helconoid 
complex, Brachistinae was sister to Acampsohelconi-
nae + Helconinae (BTP = 92). Homolobinae, Microtypi-
nae and Orgilinae were all nested in a single clade. The 
Macrocentrinae + Charmontinae clade was recovered as 
sister to all helconoid subfamilies. Within the euphoroid 
complex, the relationship Euphorinae + Cenocoellinae 
was recovered, with T. clavatus as its sister taxon with a 
relatively low support (BTP = 85). The sigalphoid com-
plex, composed of the Agathidinae and Sigalphinae, was 
sister to the euphoroid complex + T. clavatus with low 
support (BTP = 71).

Two main clades were recovered within the microgas-
troid complex. One had Cardiochilinae at the base fol-
lowed by Miracinae + Khoikhoinae + Microgastrinae. In 
the second clade, Cheloninae was sister to Hebichneutes 
tricolor Sharkey and Wharton (Proteropinae) (BTP = 92), 
whereas Paroligoneurus sp. (Ichneutinae) was sister to 
the microgastroid subfamilies (BTP = 99).

Mitochondrial gene patterns
The 13 protein-coding genes were recovered in the same 
order in the mt genome of all ichneumonoids, with the 
following two exceptions. In Chelonus sp. (Cheloninae), 
there was an inversion of the ATP6 and ATP8 genes, 
whereas Stenocorse bruchivora Crawford (Dorycti-
nae) displayed various translocations (Additional file  2: 
Table S2).

We found several tRNAs rearrangements. For the 
tRNAs block surrounding the NAD2 protein-coding 
gene we found four different rearrangements for the 
non-cyclostome subfamilies: (1) trnW-trnY-trnC, (2) 
trnY-trnC-trnW, (3) trnW-trnC-trnY, (4) trnY-trnW-trnC 
(Fig.  3, Additional file  2: Table  S2). For the cyclostomes 
s.l. (including Aphidiinae, Mesostoinae and Maxfischerii-
nae), we found six general rearrangements: (1) trnW-
trnY-trnC, (2) trnC-trnW-trnY, (3) trnW-trnC-trnY, (4) 
trnY-trnC-trnW and (5) trnC-trnY-trnW, (6)  trnY-trnW-
trnC (Fig. 3, Additional file 2: Table S2).

The tRNA block located between the protein-coding 
genes COX2 and ATP8 showed a trnK-trnD pattern for 
some cyclostome subfamilies (Mesostoinae, Maxfis-
cheriinae, Aphidiinae and neotropical doryctines) and 
trnD-trnK in Rhyssalinae. The trnK-trnD pattern was also 
found for most non-cyclostomes, except for Meteorus sp. 
(Euphorinae) and for the Microgastrinae taxa, which had 
the trnD-trnK and trnH-trnD-trnK orders, respectively 
(Fig.  3, Additional file  2: Table  S2). For most remain-
ing cyclostome subfamilies there was a trnD-trnH-trnK 
order, although the orders trnK-trnH-trnD and trnD-
trnK-trnH were also recovered. We found different rear-
rangements for the tRNA block located between the 
protein-coding genes NAD3 and NAD5, although for 
most cyclostome and non-cyclostome subfamilies the 
trnA-trnR-trnN-trnS1-trnE-trnF order was the most 
common (Additional file 2: Table S2).

We observed tRNAs rearrangement patterns within 
subfamilies with a better taxon representation. For 
instance, within Rogadinae we observed rearrangements 
that were congruent with its tribal classification. The 
trnG was mostly found between the protein-coding genes 
COX3 and NAD3, although for members of the tribe Rog-
adini it was found as part of the trnI, trnM, trnQ block, 
located between the rRNAs and the protein-coding gene 
NAD2 (Fig. 3, Additional file 2: Table S2). For the clade 
including Pambolinae + the doryctine genera Eodendrus, 
Euscelinus, Rhaconotus and Spathius, we recovered three 
different patterns of the tRNAs block between the pro-
tein coding genes COX2 and ATP8: (1) trnD-trnK-trnH, 
(2) trnD-trnH-trnK and (3) trnD-trnH (with the trnK 
located together with trnI-trnM-trnA-trnQ, near to the 
protein coding gene NAD2) (Fig.  3, Additional file  2: 
Table S2). On the other hand, for the Neotropical Doryc-
tinae clade, this tRNA block followed a trnK-trnD order, 
except for S. bruchivora, with this block located between 

Fig. 3  Gene order patterns found for tRNAs clusters KDH, WYC​ and IMQ. Terminal taxa: green = cyclostome s.l. subfamilies, 
orange = non-cyclostomes subfamilies, blue = Apozyx penyai (Apozyginae), black = Ichneumonidae. tRNAs clusters: blue, pink, green = YCW​, purple, 
red, yellow = DHK, blue, grey, orange = IMQ. White squares correspond to other genes (tRNAs or protein coding genes) recovered as part of the YCW​
, DHK and IMQ clusters. For full results of gene rearrangements, please refer to Additional file 2: Table S2

(See figure on next page.)



Page 7 of 15Jasso‑Martínez et al. BMC Ecology and Evolution           (2022) 22:46 	

Fig. 3  (See legend on previous page.)
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the protein coding genes NAD4L and ATP8 including the 
trnT (Fig. 3, Additional file 2: Table S2).

Discussion
Here we have generated and assembled a large number 
of mitogenomes for representative species belonging to 
most subfamilies of Braconidae based on both recently 
collected and older museum specimens. Our analyses 
yielded a robustly supported phylogeny that was gener-
ally concordant with a recent estimate based on nuclear 
UCE data [13] thus supporting previous results that mt 
genome DNA sequence data contain considerable phy-
logenetic signal at deep-level relationships in insects [8, 
9, 30]. Moreover, our comprehensive taxon sampling 
helped confirm previously known and discover novel 
gene rearrangements, respectively, which contain phy-
logenetic signal that correspond with recognized taxa 
within Braconidae. Below we discuss the most relevant 
relationships that were supported both by the mitog-
enome sequence data and gene rearrangements and also 
highlight the importance that gene reorganization has 
to unveil the evolutionary history of this megadiverse 
family.

Phylogenetic relationships and subfamily level 
classification in Braconidae
Jasso-Martínez et al. [13] recently proposed 41 braconid 
subfamilies based on a phylogenomic study with UCE 
data. Although our study lacked representatives of six 
subfamilies, the well-supported relationships that were 
obtained in our best estimate of phylogeny are mostly 
concordant with those found in the aforementioned 
study and thus confirmed most of their subfamilial limits 
and composition.

Our analyses consistently recovered A. penyai as sister 
to the remaining braconid subfamilies. This sister group 
relationship was also recovered in an ultra-conserved 
elements (UCE) data study [13]. Apozyx penyai possess 
some morphological features that are absent in nearly 
all extant braconids but present in Ichneumonidae and 
some extinct Braconidae [31], such as the presence of 
fore wing vein 2 m-cu (although also occurring occasion-
ally as an atavism in some Rhyssalinae and Doryctinae) 
[32–34]. However, it also shares several morphological 
features with braconids, including the cyclostome condi-
tion, fusion of second and third metasomal terga and var-
ious venation features [35], thus supporting its placement 
within the family as the subfamily Apozyginae.

Trachypetidae, consisting of the genera Trachy-
petus, Megalohelcon and Cercobarcon, was recently 
elevated to family level based on a phylogenetic study 
that employed five gene sequence markers and external 

morphological features [20]. Similar to the Jasso-
Martínez et  al. [13] study, here we recovered a mono-
phyletic Braconidae with the inclusion of T. clavatus. 
However, we recovered this species as sister to the 
euphoroid complex without strong support, whereas 
in the latter nuclear phylogenomic study it was consist-
ently placed as sister to all non-cyclostome subfamilies 
except Meteorideinae. Trachypetines possess morpho-
logical features that are absent in all braconids but are 
typical of ichneumonids, such as a separation of hind 
wing veins C and SC + R and the presence of a wing 
flexion line anterior to hind wing vein M. It also has a 
small and open fore wing costal cell as in many Creta-
ceous braconids. Trachypetines also have a well-devel-
oped hind wing vein 2-CU typical of ichneumonids but 
also present in Apozyginae and in the non-cyclostome 
braconid subfamilies Agathidinae, Sigalphinae, Acamp-
sohelconinae and Meteorideinae [20]. Further studies 
including members of the two remaining trachypetine 
genera are necessary to definitively discern the place-
ment of trachypetines within the non-cyclostome clade.

Most of the subfamilial relationships that were strongly 
supported within Braconidae were concordant with those 
obtained in other molecular studies [13, 24, 26, 34, 36–
38]. Among these are the placement and composition of 
the aphidioid complex, which we recovered as sister to 
all other cyclostomes sensu stricto and containing Aphi-
diinae, Mesostoinae and Maxfischeriinae, with the only 
member of Maxfischeriinae, M. tricolor, deeply nested 
within Mesostoinae (both cyclostome s.s. and aphidi-
oid complex comprising the cyclostome s.l. group [13]). 
Other subfamilial relationships, such as the placement 
of Rhyssalinae as sister to the remaining cyclostomes s.s., 
the close relationship and composition of Rhysipolinae, 
Hormiinae and Rogadinae, and composition of the non-
cyclostome subfamily complexes were also confirmed by 
our mt genome data.

Non-monophyly of the highly diverse subfamily Doryc-
tinae has been recovered both with Sanger sequence and 
genomic-scale data but with low support [13, 39, 40]. 
Here we again recovered a non-monophyletic Doryc-
tinae, being divided into two main non-sister clades 
but with the implied relationships having low support. 
One of the large main clades included members of the 
“South American” and the other of the “Holarctic-Afri-
can-Madagascan” clades that were obtained in Zaldívar-
Riverón et  al. [40] phylogenetic study of the subfamily, 
although here the latter clade included the species of the 
small subfamily Pambolinae. Comprehensive taxon sam-
pling will be needed to elucidate whether Doryctinae as 
defined traditionally is monophyletic. This subfamily has 
long been considered hard to diagnose based on derived 
characters, the row of pegs on the fore tibia often used in 
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subfamily keys being a homoplastic character associated 
with egress from concealed pupation sites in wood [14]. 
However, its monophyly is suggested by a small suite of 
ovipositor tip characters [41] and separate insertions of 
venom ducts onto the venom reservoir [42].

As has been revealed by numerous previous stud-
ies, the Hormiinae sensu lato and the Exothecinae are 
not closely related, even though they had often been 
treated as synonymous (e.g., [43]). The genus Avga was 
proposed, together with other genera, to comprise the 
tribe Avgini, and subsequently it has been placed within 
Exothecinae, Mesostoinae or Hormiinae [34, 44–49]. 
Here we recovered Avga as sister to a clade comprising 
Rogadinae, Hormiinae, Rhysipolinae, the braconoid sub-
complex and the Holarctic-African-Madagascan (HAM) 
doryctines + Pambolinae, whereas in the UCE study by 
Jasso-Martínez et  al. [13] it was nested together with 
Xenosternum as sister to the braconoid subcomplex.  . 
Additional studies will thus reveal the phylogenetic affini-
ties of Avga, which currently is considered as incertae 
sedis within Braconidae [13].

Based on Sanger sequence data, Sharanowski et al. [26] 
recovered a clade with intermingled species of Alysii-
nae, Opiinae, Exothecinae and Telengaiinae (previously 
Gnamptodontinae), naming it as the alysioid subcomplex. 
In our analyses, this clade consistently had Braconinae as 
sister to the former three subfamilies, a relationship that 
has been recovered in other studies based on analyses of 
Sanger-sequenced genes [48]. Jasso-Martínez et  al. [13] 
recovered the same taxon composition but with Braconi-
nae as sister to Telengaiinae and renamed it as the braco-
noid subcomplex.

Four subfamily complexes were considered by Shara-
nowski et  al. [26] within the non-cyclostome lineage—
the euphoroid, helconoid, microgastroid and sigalphoid 
complexes. Our phylogenetic estimates recovered a 
mainly similar subfamily grouping composition but with 
different relationships among the complexes in compari-
son with the Sharanowski et al. [26] and Jasso-Martínez 
et  al. [13] phylogenies. We obtained the microgastroids 
as sister to the remaining complexes, followed by the 
helconoids, sigalphoids and the euphoroids + T. clava-
tus. In contrast, in the above two studies the sigalphoids 
were sister to the microgastroids, and particularly for 
Jasso-Martínez et al. [13] the only examined member of 
Meteorideinae was sister to all the non-cyclostomes fol-
lowed by T. clavatus (Trachypetinae), the helconoids and 
then the euphoroids.

Recently, Jasso-Martínez et al. [13] expanded the com-
position of the sigalphoid complex to contain Ichneutinae 
in a restricted sense, including the genera Ichneutes, Oli-
goneurus and Paroligoneurus, whereas the genera Hebich-
neutes, Masonbeckia and Proterops, previously placed 

within Ichneutinae, were included in the subfamily Pro-
teropinae, with the latter being sister to the microgas-
troid complex. The Proteropinae had also been treated as 
a subfamily by Chen and van Achterberg [50] and Shar-
key et al. [51] based on evidence of previous phylogenetic 
studies that failed to recover Ichneutinae as monophyl-
etic (e.g., [26]). Nevertheless, Jasso-Martínez et  al. [13] 
phylogenomic study is the only one that has separately 
recovered both lineages with high support, and therefore, 
they confirmed Proteropinae as a subfamily. Despite that 
we had a limited taxon sampling for the non-cyclostome 
taxa, our results are partially in agreement with the above 
study, since Hebichneutes (Proteropinae) was nested 
within the microgastroid complex, although Paroligoneu-
rus (Ichneutinae) was sister to all microgastroid subfami-
lies. This contrasts with Jasso-Martínez et al. [13], where 
Ichneutinae was placed within the sigalphoid group of 
subfamilies.

Mt gene rearrangement evolution within Braconidae
Mt gene rearrangements have been shown to be phylo-
genetically informative at different evolutionary scales 
in various insect orders, recovering particular patterns 
for specific lineages [7, 25, 29, 52–55]. In Hymenoptera, 
sawflies and woodwasps (previously known as Symphyta) 
usually have a conserved mt gene order, whereas various 
gene rearrangements have been reported for Apocrita [9, 
56].

Previous studies have reported the existence of particu-
lar mt gene rearrangements within Braconidae, although 
taxon sampling in these works was rather limited, only 
including part of the currently recognised subfamilies 
and only one or few of their species [11, 25, 27–29]. These 
studies showed that mt protein-coding gene organization 
in Braconidae is not substantially different from the puta-
tive ancestral Pancrustacean mt genome or among mem-
bers of this family. Our results confirm this conservative 
mt protein-coding gene order, as we only found a novel 
inversion of the ATP6 and ATP8 genes in one member of 
Cheloninae and confirmed previously reported translo-
cations in the doryctine S. bruchivora [57]. A conserved 
protein-coding gene order is also present in other hyme-
nopteran families [7, 56].

In contrast with the protein-coding genes, it has been 
shown that there are some differences in the tRNAs 
order pattern between the cyclostome and non-cyclos-
tome subfamilies [11, 25, 27–29]. However, the exist-
ence of additional phylogenetically informative tRNAs 
rearrangements at different levels of divergence was 
unknown. Our comprehensive taxonomic sampling not 
only helped confirm the above tRNAs rearrangements 
but also found that tRNAs reorganizations appear to be 
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consistent with tribes recognized in the two subfami-
lies with highest species representation, Rogadinae and 
Doryctinae.

We corroborated the previously observed rearrange-
ments in three main tRNA clusters between members of 
the cyclostome and non-cyclostome subfamilies, with the 
non-cyclostomes and the earliest diverging cyclostomes 
having a more conserved mt gene organization [25, 27, 
28]. These tRNAs rearrangements involve the blocks 
comprising trnK-trnD-trnH located between the pro-
tein-coding genes COX2 and ATP8 [25, 27, 28], the block 
comprising trnW-trnC-trnY near to the protein-coding 
gene NAD2 [25] and the block comprising trnA-trnR-
trnN-trnS1-trnE-trnF located between the protein-cod-
ing genes NAD3 and NAD5 [58].

We found two novel patterns of tRNA rearrangements 
that appear to be phylogenetically informative and cor-
respond to tribes within Rogadinae. In one of them, the 
included species of the tribe Rogadini had a transloca-
tion of the trnG, which was flanked by the ribosomal 
rrnS locus, as part of the tRNAs cluster trnI-trnM-trnQ. 
In contrast, the remaining tribes had the putative ances-
tral condition, where the trnG was located between the 
protein-coding genes COX3 and NAD3. The second 
rearrangement was detected in the tRNA block situated 
between the protein coding genes NAD2 and COX1. 
Within Aleiodini we recovered the trnY-trnC-trnW 
order; we found trnW-trnC-trnY for Yeliconini and trnW-
trnY-trnC for Stiropiini and Betylobraconini. For Roga-
dini there were three different orders—trnY-trnW-trnC, 
trnW-trnC-trnY and trnW-trnY-trnC.

Similar to other phylogenetic studies [13, 40], we recov-
ered the Doryctinae as non-monophyletic, being divided 
into two separate main clades that were each mainly com-
posed of “South American” (SA) and “Holartic-African-
Madagascan” (HAM) genera, respectively. We found two 
clear differential patterns of tRNAs among these clades 
between the protein-coding genes COX2 and ATP8. In 
the HAM doryctine clade, which also included Pambo-
linae, this tRNAs cluster included trnD, trnH and trnK. 
On the other hand, similar to the results obtained in 
Samacá-Sáenz et al. [57], in the SA clade this tRNAs clus-
ter was generally composed of trnK and trnD except for 
S. bruchivora, whose translocation was located between 
the protein-coding genes NAD4L and ATP8 with a trnK-
trnT-trnD order. The trnK-trnD order observed in the 
Neotropical doryctine clade was similar to the one found 
here in the cyclostome s.l. subfamilies Rhyssalinae, Aphi-
diinae, Mesostoinae and Maxfisherinae, as well as in all 
non-cyclostomes.

Recovering mt genomes from UCE libraries
The analysis of mt nucleotide sequence data is one of 
the most common approaches to investigate evolution-
ary relationships. Generation of mt DNA was until the 
last decade generally obtained using Sanger sequencing; 
however, with the advent of next-generation sequenc-
ing (NGS), the generation of complete mt genomes has 
become relatively simple to obtain due the considerably 
higher efficiency of NGS technologies [30].

In recent years, the sequence capture of UCEs has 
become one of the most used methods for obtaining 
genomic-scale data to investigate evolutionary relation-
ships of several animal taxa, including insects (e.g., [59–
61]). Regardless of the targeted nature of this technique, 
raw UCEs datasets can be harvested to recover off-target 
sequences such as mt DNA, with the possibility of assem-
bled complete mt genomes [62]; thus, the recovery of mt 
genomes from UCE libraries is currently increasing in 
phylogenomic studies (e.g., [57, 63]).

In this study, we have shown the efficiency that the 
raw UCE data have to obtain mt genome sequence data 
for phylogenomic reconstruction, even when using old 
and dry museum specimens, since target enrichment 
methods have shown a higher success rate when work-
ing with old museum specimens over other techniques 
such as RADseq [64]. Here, we recovered shorter assem-
blies from older samples compared to recently collected 
samples whose mt genomes were extracted as a second-
ary product of the UCE data. However, despite the direct 
relationship between sample age and size of mt assembly, 
the assembled mitogenomes contained considerable phy-
logenetic information. As a result we were able to recover 
a robust estimate of phylogeny, even with a high amount 
of missing data, that was mostly congruent with a phy-
logeny obtained using targeted UCE regions (i.e., [13]).

Conclusions
This comprehensive mt phylogenomic study of Braco-
nidae showed that both the mt genome DNA sequence 
data and gene organization contain valuable phylogenetic 
signal that can be employed to elucidate the evolution 
of this megadiverse group of hymenopterans at different 
levels of divergence, including deep relationships. This is 
supported by our phylogenetic reconstruction, which was 
mostly consistent with previous phylogenetic hypotheses, 
particularly the one based on nuclear-genome scale data 
[13]. Moreover, the gene rearrangements discovered in 
our study can be used as diagnostic features for tribal 
delimitation within Rogadinae and Doryctinae. Future 
studies should be carried out with more extensive taxon 
sampling to discern the existence of phylogenetically 
informative variation within other braconid subfamilies.
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Methods
Taxonomic sampling
Our taxon sampling comprised 128 and 143 ingroup gen-
era and species, respectively, covering all biogeographic 
regions and belonging to most of the extant currently 
recognized braconid subfamilies (see [13, 14, 37, 50]). We 
included 102 species from all cyclostome s.l. subfamilies 
and 40 non-cyclostome species comprising the helco-
noid, euphoroid, sigalphoid and microgastroid complexes 
(sensu Sharanowski et al., [26]), representing most of the 
non-cyclostome subfamilies except for Amicrocentrinae, 
Dirrhopinae, Masoninae, Mendesellinae, Meteoridei-
nae, and Xiphozelinae. We also included a specimen of 
Apozyx penyai Mason. This enigmatic taxon has been 
placed in its own family, Apozygidae [19] or within Bra-
conidae [13, 17, 31, 65]. We also included a specimen of 
Trachypetus clavatus Guérin-Meneville, which has been 
placed within Braconidae [66, 67] or elevated as the fam-
ily Trachypetidae [20], although it was recently returned 
to Braconidae based on genomic-scale data [13].

We included four species of the family Ichneumoni-
dae as outgroup taxa: Vulgichneumon sp. (Ichneumoni-
nae), Pimpla aequalis Provancher (Pimplinae), Netelia 
sp. (Tryphoninae) and Odontocolon albotibiale Bradley 
(Xoridinae). We used data from a species of Megaspili-
dae, of the superfamily Ceraphronoidea, to root the trees. 
This superfamily was found to be sister to Ichneumo-
noidea in a recent study based on transcriptomic data 
[68]. Voucher specimens are housed in the Colección 
Nacional de Insectos at the Instituto de Biología, Univer-
sidad Nacional Autónoma de México (CNIN IB-UNAM); 
at the Smithsonian Institution National Museum of Nat-
ural History, Washington, DC (USNM); in the Zoologi-
cal Institute, Russian Academy of Sciences, St Petersburg, 
Russia (ZISP) and at the Canadian National Collection 
of Insects (CNC), Ottawa, Canada. A list with GenBank 
accession numbers of the mitogenomes assemblies and 
further details of all the taxa examined in this study are 
provided in Additional file 3: Table S3.

Assembly and annotation of mt genomes
The mt genomes of 122 samples were extracted in silico 
from raw reads generated from libraries that were origi-
nally prepared for obtaining ultra-conserved element 
(UCE) loci. Details of genomic DNA extraction and 
library prep protocols are given by Jasso-Martínez et al. 
[13, 37]. For 10 additional samples (Additional file  1: 
Tables S1, Additional file 3: Table S3), we used data gen-
erated by whole-genome shotgun sequencing. Shotgun 
libraries were prepared using the Kapa Hyper Prep kit 
(Kapa Biosystems Inc. Wilmington, MA, USA) and the 
TruSeq-style dual-indexing adapters [69]. Sequencing 

was performed in an Illumina HiSeq X Ten instrument at 
the Department of Environmental Health Science, Uni-
versity of Georgia, Athens, GA, USA.

Raw reads from the UCEs libraries were trimmed and 
filtered using Illumiprocessor [70], a wrapper around 
Trimmomatic [71, 72] in the pipeline Phyluce version 
1.6.6 [73]. Raw reads from the shotgun sequencing were 
filtered using Geneious 10.2.6 [74]. Cleaned reads were 
de novo assembled into the mt genome sequence with the 
GetOrganelle toolkit [75] using the default database ‘ani-
mal_mt’. For the datasets from which we did not recover 
the complete mitogenome or obtained more than one 
contig in the de novo assembly, we used a combination 
of assembly approaches in order to obtain longer contigs 
as follows. For a given sample, the contig(s) obtained in 
GetOrganelle were used as template to obtain a unique 
and longest contig using by-reference assembly in the 
program Geneious 10.2.6 [74]. We avoided using as tem-
plate the assembled mitogenome from a different sample, 
even if closely related, so as to not bias the specific gene 
order of each individual.

The mt sequences of 14 doryctines and Pambo-
lus oblongispina (Pambolinae) that were generated in 
Samacá-Sáenz et al. [57] study (Additional file 3: Table S3) 
were downloaded from GenBank and annotated together 
with the assemblies obtained in this study in the MITOS 
2 webserver [76] using the invertebrate genetic code. We 
verified the protein-coding genes signal from the “protein 
plots” generated by MITOS. Finally, we used the program 
Geneious version 10.2.6 [74] to confirm the accuracy of 
our assemblies and annotations. We registered the order 
of the protein-coding genes, tRNAs and rRNAs to iden-
tify patterns of gene rearrangements using as reference 
the Pancrustacea ground pattern, which is the proposed 
Crustacea/Hexapoda common ancestor [77, 78].

Several of the museum specimens employed in this 
study were of considerable age. We therefore investigated 
the correlation between specimen’s age (0—91 years old) 
with the mt genomes assembly size calculating the Pear-
son’s correlation coefficient of these variables with R ver-
sion 3.6.0 [79]. We also used R to plot the number of mt 
genomes for which each protein-coding and tRNA genes 
were recovered. For both the statistical tests and plots, 
we excluded the mt genomes of samples that did not have 
a collection date, that we did not assemble in this study 
(i.e., most doryctines and Pambolus oblongispina [57]), as 
well as those that were assembled from shotgun libraries.

Matrix alignment and phylogenetic analyses
We extracted for all samples the 13 protein-coding and 
the two ribosomal RNAs (rRNAs) sequences. The align-
ments of the protein-coding genes were performed inde-
pendently (13 alignments) with the program MAFFT 



Page 12 of 15Jasso‑Martínez et al. BMC Ecology and Evolution           (2022) 22:46 

version 7 [80]. We verified the protein-coding gene align-
ments with respect to the reading frame (invertebrate 
mt genetic code). Some regions of the translated align-
ments had unalignable regions. These ambiguities were 
delimited by identifying the conserved flanking regions 
and removed. The mt rRNA gene regions were aligned 
according to Wu et  al. [81] model with additional ref-
erence to Buckley et  al. [82]. The 16S gene was aligned 
between the core I region and five bases after H2675, a 
length comprising approximately 1140 bases of which 
763 were considered reliably alignable. For 12S, we con-
sidered approximately 620 bases between H500 until 
7 bases following the H1506 helix. Of these, 340 bases 
were reliably alignable. In both cases, the analyzed reli-
ably alignable positions included a mix of base-pairing 
helix stems, as well as length conserved loops, expansion 
regions and stretches of core sequence. The alignable 
bases of the ribosomal genes and the 13 protein-coding 
gene alignments, a total of 15 genes for the complete 
matrix, were concatenated in the program Geneious ver-
sion 10.2.6 [74].

We predefined 41 partitions for the concatenated 
matrix: three partitions based on codon position for each 
of the 13 protein-coding genes and one partition each for 
the two rRNA genes. We selected the best-fit partition-
ing scheme and substitution model with ModelFinder 
[83] in the program IQTREE version 2 [84] according 
to the Bayesian information criterion, obtaining 17 sub-
sets of partitions. We conducted two Maximum Likeli-
hood (ML) analyses in IQTREE version 2 [84] with 1000 
ultra-fast bootstrap replicates using (1) the matrix with 
the 41 predefined partitions based on codon position 
and rRNAs, and (2) the matrix with the best-fit partition-
ing scheme. The concatenated alignment consisted of 
148 terminal taxa and 11,717 base pairs. For the matrix 
with the best-fit partitioned scheme we also conducted 
a Bayesian analysis with the program Mr. Bayes version 
3.2.7 [85], which consisted of two simultaneous runs of 
50 million generation each, sampling trees every 5000 
generations and a burn-in fraction of 0.25. The concat-
enated alignment including partition sets and the anno-
tated alignments of the used ribosomal genes 16S and 
12S are available as Additional file 7: File S1, Additional 
file 8: File S2 and Additional file 9: File S3, respectively.

We evaluated whether different levels of missing data 
and number of taxa had an effect on our phylogenetic 
inferences. For this, we generated four additional datasets 
considering the number of missing genes as follows: (1) 
dataset including taxa with no missing genes, (2) dataset 
including taxa with 0–2 missing genes, (3) dataset includ-
ing taxa with 0–6 missing genes and (4) dataset including 
taxa with 0–9 missing genes. Therefore, for each data-
set, we included 70, 105, 128 and 142 taxa including the 

outgroup, respectively. For each dataset we selected the 
best-fit partitioning scheme and substitution model with 
ModelFinder [83] and performed ML analyses in IQTREE 
version 2 [84] with 1000 ultra-fast bootstrap replicates. 
All four matrices and their included partition sets are 
available in a single file as Additional file 10: File S4.
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